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It is shown that, for a class of finite dimensional subspaces G of C(X), where X
is a certain compact Hausdorff space, the following holds: For each f€ C(X) there
is a best uniform approximation g, € G for approximating f by G such that the
error f— g, has at least n + 1 extremal points (dim G = n) which are oriented in a
certain sense. Furthermore, in the case when X is any compact Hausdorff space, it
is studied under which conditions on G, for each f'€ C(X), there exists at most one
such best approximation and a sufficient condition for this is given.

INTRODUCTION

Let X denote a compact Hausdorff space and C(X) the space of all real-
valued continuous functions f on X under the uniform norm
| f1l == sup{|f(x)|:x € X}. If G is a finite dimensional subspace of C(X),
then, for each f€CX), the set Pi(f):={g G |f—gl=
inf{|| f— g|| : g € G}} is the set of best uniform approximations to f from G.
It is well known that Pg(f) is a singleton for each f€ C(X) if and only if G
satisfies the Haar condition. It is also well known (see Singer |7, p. 182])
that if G =span{g,,..,g,} satisfies the Haar condition, then, for each
SE€ C(X), the error f— g, where {g,} = P;(f), has at least n + 1 extremal
points x,,..., X, € X such that &-&(-1)'(f—g)(x) = —gl, i=0,.,n,
&= +1, where

&; = sgndet(g,(x)))k=1 /=0
(K]
In the particular case when X=[q,b], a real compact interval, and
Xy <X, < -+ <Xx,€E [a,b], these constants assume the same values ¢, =€
with £= + | and, therefore, the error f— g, has at least n + 1 alternating
extreme points. Considering this special case we call g, an alternation
element of f also in case X is not an interval.

If G fails to satisfy the Haar condition, then for a given f€ C(X), there

may or may not exist a g € P;(f) such that g can be interpreted as an alter-
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nation element. This problem has been studied by some authors in the
following sense: How to describe those spaces G for which, for each
SECWKX), XcR, there is a g€PLf) and n+1 distinct points
Xg <X <+ <x,EX such that e(—1)(f—g)x)=I/—gl i=0,..,n,
e=+1?

In the particular case when X = [a, b], Jones and Karlovitz [2] have
completely solved this problem. They have shown that the spaces having this
property are exactly the weak Chebyshev spaces. Later on, Deutsch et al. [1]
have generalized this result to the weak Chebyshev subspaces of Cy(7T),
where T is any locally compact subset of R and Cy(7) denotes the Banach
space of all real-valued continuous functions on 7 vanishing at infinity, i.e.,
for each ¢ >0 the set {xET:|f(x)>¢€} is compact. Niirnberger and
Sommer [6] and Niirnberger [5] have characterized those weak Chebyshev
subspaces of C[a, b] and of Cy(T), respectively, for which even uniqueness of
the alternation elements holds.

In this paper we are concerned with finite dimensional subspaces of C(X)
which fail to satisfy the Haar condition and may not be weak Chebyshev.
We study the problem of existence and uniqueness of alternation elements in
this general case. Following the definition of alternation elements in the Haar
case we analogously define such functions in the case when G belongs to a
class of finite dimensional subspaces of C(X) whose non-zero elements have
at most finitely many zeros. We show (Theorem 1.5) that, under appropriate
hypotheses on X, each f& C(X) has at least one alternation element for
approximating f by G. We furthermore give a condition (Theorem 2.3) under
which for each f€ C(X) there is at most one alternation element. Then from
both of these results there follows a result of Niirnberger and Sommer [6],
their arguments, however, and also the arguments established by Niirnberger
[5] do not apply to our case as we show in Example 1.

Our results immediately apply to the problem of existence of continuous
selections for the metric projection P;. Such a continuous selection s is a
continuous mapping s: C(X) — G such that s(f) € Pg(f) for each f€ C(X).
We show in [8] that the property that each /'€ C(X) has a unique alternation
element g, € P;(f), where X satisfies the same hypotheses as in Theorem 1.5
implies the existence of a continuous selection s defined by s(f) :=g;.

Using the arguments established in this paper it is easily verified that all
results given here are also true if C(X) will be replaced by Cy(T), where T is
a corresponding locally compact Hausdorff space.

1. EXISTENCE OF ALTERNATION ELEMENTS

In the following X will be any compact Hausdorff space and X a compact
Hausdorff space satisfying the following property: For each sequence
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{x,} € X with x, » x € X for k— oo and each neighborhood U of x there is
an integer k, such that for all x,, x;€ U, k> k,, k> k,, there is a path P
from x, to x; completely contained in U.

Furthermore G will always denote an n-dimensional subspace of C(X) and
of C(X), respectively, n> 2 and X, respectively, X will contain at least one
non-isolated point. For brevity we will give some notations and definitions
only for X but we will always assume that the same has been done for X.

We often will use the following properties.

DEerINITION 1.1. We say that G satisfies the Haar condition on a subset
Y of X if each non-zero g € G has at most n — 1 zeros on Y. G is said to be
Chebyshev if P;(f) is a singleton for each f&€ C(X).

It is well known that these both conditions are equivalent. In particular the
following statement holds:

THEOREM 1.2. The following statements are equivalent:

(i) G is Chebyshev.
(ii) G satisfies the Haar condition on X.

(iii)
gi(x)) o &ilxn)
det(g(x;)) ;L1 = : : £0

8alxy) 8n(x,)

Jor each basis g,,....g, of G and all n distinct points x,,...x, € X.

A proof of this classical result can be found in Meinardus [4].
Statement (iii) of the preceding theorem will play an important role for the
following arguments. Therefore, for brevity we set

Dg(x) ey X,) i=det(g,(x;) /2, for all points x,,..., x, € X,

where g,,..., g, is a fixed chosen basis of G.
Henceforth we will suppose that G satisfies the following conditions:

(1.1) There is a minimal finite subset Z = {z,,..., z,,} of non-isolated
points of X such that G satisfies the Haar condition on X\Z.

(1.2) For any n distinct points x,,..., x, € X there are pairwise disjoint
neighborhoods U, of x;, i = 1,..., n, such that eDg(y,,....y,) >0, e = £ 1, for
ally,e U, i=1,..,n

Then these both conditions imply that for any n distinct points
X ey X, € X the inequality eDg(¥(s.s ¥,) > 0, € = £ 1, holds for all n-tuples
(V1o y) ETTE, U, for which { ¥y, NZ =@.
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If Xc R, then the finite dimensional subspaces G of C(X) for which
EDG(x,senx,) 20, €= 11, for all points x, <x,< - <x,EX play a
fundamental role in the approximation of functions. In particular, the
following statements are equivalent:

(i) éDg(xysrx,) 20, €= +1, for all points x, < --- < x, € X.

(ii) Each g € G has at most #n — 1 sign changes, i.e., there do not exist
points x, < x, < +-+ < x,, € X such that g(x;) g(x,,,) <0 for i=0,..,n— 1.

This equivalence has been proved by Jones and Karlovitz 2] if X = [a, b},
a real compact interval and by Deutsch et al. [1] if X is any compact subset
of R. By Karlin and Studden [3] a space G satisfying one of the preceding
conditions is said to be a weak Chebyshev subspace of C(X).

We will show that the conditions (1.1) and (1.2) imply that each f€ C(X)
has a particular best approximation. To do this we will need the following
notations:

Let x4,x,,..,x, be any n+ 1 distinct points. If, for some i € {0...., n},
Z OV {Xgseey Xj_ 1> Xpy g oeees X} = @, then we set:

A (g ey X)) i=SBN D (X sees Xy _ 1 Xy 13000 Xpp)-

If Z OV {Xgaes X ys X 10 X} # &, then by condition (1.2) there are

neighborhoods U; of x; for j=0,.,n, j#i such that

EDG(Yors Yic1s Vie 1o Va) > 0, € = 21, for all

n
(yo,...,y,-_l,y,-+1,---,J’n)e n Ui

Jj=0
J#i

for which { ygseees Vi 1s Vig19es Yo} M Z =@. In this case we set
Ay(xg s X)) = 8BN Dg(Vgseos Vi 15 Vig 10oees Yu)r

Then we define

DEFINITION 1.3. If f€ C(X), then g, € P;(f) is said to be an alternation
element (AE) of f, if there exist n + 1 distinct points x,.,..., x, € X such that

8(_1)i Al(xo 3003 xn)(f_ go)(xi) = ”f_go“’ i=0,.,n €=+l
The points x,.,..., x, are called oriented extreme points (OE-points) of f— g,.
In the following the variables x,y,..., x,, of 4; will sometimes be omitted.

Remark. 1If X=|a,b] and G is an n-dimensional subspace of C|a, b|
satisfying the conditions (1.1) and (1.2), then it is easily verified that
EDg(x) sy x,) 20, E=41, for all points a<x, <-:<x,<b Then



SUBSPACES AND ALTERNATION 135

following the above given equivalence it turns out that G must be a weak
Chebyshev subspace for which each nonzero g € G has at most finitely
many zeros. Therefore we have that for all points @ < x, < x; < +-- <x,< b
and i=0,.,n the relation A4,(xy,.,x,)=¢ holds and in this case
Definition 1.3 simplifies to the following: A function g, € P4(f) is an
AE of f, if there exist n+ 1 points ax, < <x,<b such that
6(’_1)i(f_g0)(xl) = ”f_ go”’ i=0,.,n =1l

In this case the points x,,..,x, are alternating extreme points and
therefore the notation AE seems to be justified also in our general situation.
Jones and Karlovitz [2] have shown that the subspaces G of C|a, b] for
which for each f€ C|a, b] there exists at least one AE g, € P;(f) are
exactly the weak Chebyshev subspaces of C|a, b|. Later on, Deutsch et al.
[1] have generalized this result to the weak Chebyshev subspaces of Cy(T),
where T is any locally compact subset of the real line and a weak Chebyshev
subspace G of Cy(7) is defined analogously as in the case Xc R, X
compact.

If G is a Chebyshev subspace of C(X), then the existence of an AE for
each f€ C(X) is well known. This can be found in Singer [7, p. 182]. In
particular, the following characterization of existence and uniqueness of best
approximations is given:

THEOREM 1.4. The following statements are equivalent:

(i) G is a Chebyshev space.

(ii) For every f€ C(X) there exists a unique best approximation
g&EQG.

(iii) For every f€ C(X) there exists a unique best approximation
&€ G and g, is an AE of f.

We are now able to prove our first result.

THEOREM 1.5. Let G be an n-dimensional subspgce of C(X) satisfying
the conditions (1.1) and (1.2). Then for each f € C(X) there exists at least
one AE g, € P;(f).

Proof. Since each z,€ Z is non-isolated, for each i = 1,..., m there is a
sequence {z,}c X with z, -z, for k—» oo and z, # z,. This implies the
existence of open neighborhoods U, of z,, i = 1,..., m, such that for each k
Uy< U, and z, € Uy ,_\Uy. For each k we set X, := X\U™ , Uy.

Then by condition (1.1), G satisfies the Haar condition on X, and
therefore Theorem 1.4 implies, for each f€ C(X), the existence of a 8. €GC
such that g, |y, is an AE of f |y, with respect to G|,. Then it follows from
Il gxllx, < 2|l £l that there is a subsequence of { g,} which we again denote by
{8} such that g, - g, for k— o0, g, € G. This function g, satisfies the
following:
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(i) go€ Py(f), since otherwise there is a g€G with
|f—2&ll <||f— gl But this is not possible, because z,, —z; and z;, € X,
implies thé existence of an integer k, such that for all k > k, the inequality

IS = &llx, <1/~ &llx, holds.

(ii) g, is an AE of f. To show this, for each k we denote n + 1 OE-
points of f—g, by Xp, X1k X Then for each k the relation
el(—1) 4y (f— 8)x) = f— &lx,» i=0som, & =21, holds where
Aige =80 D(Xop ey Xi_ g s Xp 1 k3eees Xnic)-

Without loss of generality we may assume that ¢, = ¢ and x,, — x, € X for
k — co. If all points x,,..., x,, are distinct, then it follows from condition (1.2)
that 4,, —» 4,(x4,..., x,,) for k> co and we are ready.

Therefore suppose that, for some j € {0,...,, n} and some [ € {1,...,j}, x; , =
Xy =-=x; and x;#x; for i=0,.,j—1—1,j+ L..,n We may
assume that / is an odd number. Then it follows from &(—1)'"*

Aj—i.k(f— gk)(xj—i,k) =|f— gk“Xk = 6(_1)11_'.+l Aj—i+1.k(f_gk) (xj—i+l.k)
for i=1,.,1 and x;_;,»x;_,=x; for k-0, i=0,.,/ that 4, ,, =
di jyap==4; o =—Ay=—4;_,,==—4,_,,,, for k sufficiently
large. Since x; # x; for i=0,..,j—{—1,j+ L,..., n there must be an integer
ko and a neighborhood U of x; such that x;_; ,, X,_;, ks Xy € U for all
k>k, and x,, € U for i=0,..,j —I—1,j + 1...., n. Then by definition of X
there is an integer k; >k, such that for any two points Xz, Xz, D
g€ {j—1,...jl, k>k, there is a path P from x; to xj; completely
contained in U. Then it is easily verified that, for some k > k,, there are two
points x,,, x,, and a path P < U from x,, to x,, such that p,q € {j —I..., j},
p<q, p+q an odd number and x; &P for i=0,..,n, i#p,q. Since
A= —Ay and G satisfies the Haar condition on {xg ..., X, 4,
Xyt ke Xt AN ON {Xgppeiy X f 4s Xy 1 g3es Xpi} it fOllOws that for the
function [/, defined by

(%) = D g(Xogews Xp 1 k> Xp g 1.k00ews Xg - 1,k2 Xq 4 1kwees Xies X)
the inequality
sgn [ (xp) - sgn [(xg) = (—1)" P A (1) Ay,
=Aqk'Apk=_l <0

must hold. This implies the existence of a point i‘ € P such that /,(¥) =0 and
X must be a zero with a sign change of /, in X. This means that for each
neighborhood V of X there are points X, X € V such that

D (Xokrees Xp 1,k Xp s 1,k rmees Xg—1,k> Xg 41, k0w X s X)

X DG(Xogsews Xp_ 1,k Xp 4 1.k5o0s Xg— 1.k Xg 1,k00es Xgs X) < 0.
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Since by the preceding arguments all poINts Xgupes X, 1 ks Xpy 15000
Xg_1,ks Xg4 1,60 Xni» X are distinct, we have got a contradiction to condition

(1.2).

2. UNIQUENESS OF ALTERNATION ELEMENTS

We will show in [8] that the existence and the uniqueness of AEs
guarantee the existence of continuous selections. Therefore in this section we
study under which conditions on G for each f€ C(X) there is a unique AE.
In Theorem 2.2 we show that uniqueness holds if Z is a singleton. To prove
this we need the following lemma which even holds for any compact
Hausdorff space.

LEMMA 2.1. Let Z={z} and g,€EP,(f) be an AE of f If
{2} {xg e X, } # D, where xg,...,x, are n+ 1 OE-points of f—g,, then
8(z) = gy(2) for all g € P5(f).

Pro_of. Let xg,..x, be n+1 OEwpoints of f-—g,. Then
e(—=1)'4,(f - 8)(x) =/~ &lls i =0y, n, €= £1.

Let g € Pg(f) arbitrary. Then it follows from || f—g|l=|f— gl that
e(=1)' 4,(f — 8)(x) < e(—1)'4,(f— go)(x;) and, therefore, &(—1)" 4,(g, — &)
(x)<£0,i=0...,n.

We now assume that there is a j€ {0,.., n} with z=x;. Then, since
Gly,=Glyy, satisfies the Haar condition, it follows that
DG (Xgpeees Xj_ 15 Xjy 1 seees X ) 7 0.

Since dim G = n, we have the following equality:

(8 —8)xo) -+ (8 —8)x,)
8:(x,) &(x,)
0 =
gn(.xo) gn(.xn)

n
= 2 (1) Dg(xgsees Xi_ 15 Xi 4 g omees X, N 80 — £)(X,)s
i=o

where {g,,..,&,} is a fixed chosen basis of G and D, is defined
corresponding to this basis. Since for Dg(xg,..o X;_ 15 Xjypses X,) 0 the
relation A, =sgn D;(xg,e.., X;_ 15 X415 X,) holds, it follows from
e(—1) 4,(go — 8)(x;) <0, i =0,..., n, that for i = 0,..., 1, (1) D(Xgsems X;_ ;>
Xiy 1o X )( 80 — 8)0x;) = 0. Then D(xgsens X;_ 15 Xj g5 X,,) % O implies that
g(z) = g(2).

We are now in a position to give a sufficient condition for uniqueness of
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AEs which shows that uniqueness of such particular best approximations is
not restricted to the case when G is a Haar space.

THEOREM 2.2. Let G be an n-dimensional subspace of (:‘(X') satisfying
the conditions (1.1) and (1.2) with Z = {z}. Then each f € C(X) has a unique
AE.

The proof of this statement follows directly from Theorem 1.5 and the
following theorem.

THEOREM 2.3. Let G be an n-dimensional subspace of C(X) satisfying
the conditions (1.1) and (1.2). Then each f€ C(X) has at most one AE.

Proof. Suppose there is an f&€ C(X) having two AEs g,, g, € Ps(f). Let
Xgseees X, @nd yg,..., , be OE-points of f— g, and f— g,, respectively. Then

E(_l)’ A(Xq5nes xn)(f_ gl)(xi) = ”f_- &1 “’ i=0,.,n €=+l

and
(=1 4 (yorm YIS — 8V =S —8olls  i=0,,ne==l.

Without loss of generality we may assume that g, =0 and £§=1. We
distinguish two cases.

First case. z & {xgyy X} OF Z& {Yy,e., ). Without loss of generality
let z & {x;,.., x,}. Then condition (1.1) implies that G satisfies the Haar
condition on {x,,..., x,}. Furthermore by the arguments of Lemma 2.1 we
have that 0 is an AE of f for approximation by G on {x,,..,x,} and
|(f— go)(x)| €| f(x;)| for i=0,.., n. But this contradicts the statements of
Theorem 1.4.

Therefore we have only to consider the second case.

Second case. z€ {xy,.,x,} and z € {y;,..,y,}. Let z=x;=y,. Then
Lemma 2.1 implies that g(x;)=0 for all g€ P,(f) and, in particular,
f(xj) = (f—~ go)( i) -

In the following we will only need a special subset X of X. We set

~

X = {Xgsens Xps Yosoons Y} U Ups
where U, is a closed neighborhood of z in X such that

{Xgees Xy 15 Xy poeees Xy Vosees Vo1 Vg 190 Y} N Ug =2

and | go(x)| < 3| f(x)| for all x€ U, (remember that g,(z) = 0). We will now
construct a function f€ C(X) and an n-dimensional subspace G of C(X)
such that the following conditions hold:



SUBSPACES AND ALTERNATION 139

(i) G satisfies the Haar condition on X\{z}.
(ii) sgn Dg(ty s t,) = sgn Dg(tysenr t,,) for all points ¢,,..., 2, € X and
certain bases g,,..., g, of G and §,...., &, of G.

(iii) f has two AEs 0, §, € G. Furthermore Xx,,...,x, are n+ 1 OE-
points of f/— 0 and y,...., y, are n + 1 OE-points of f— g,.

_ (iv) Iy, € {xg., X,}, then | F(p) < || Fllz and if x, & {yqs.rs Vs }» then
I(F = &)x) < [|.F— &llg-

Before constructing such a function fand a subspace G having the preceding
properties we show that the existence of fand G yields a contradiction of the
hypothesis that f has two AEs 0, g, € P;(f). Since by condition (1.1) the
point z is non-isolated, there is a sequence {z,} < U, such that z,, - z for
m— o, z,+ z. This implies that {z, } M {xXq,.., X,s Vgses ¥} = @. For each
meE N we set:

T = {Xgses Xj_ s Zpys Xj i yoeees X}
and
TZm = {y(]"“’yk—l’ zm’yk+l"“’yn}'

We now approximate /by G on T, and T,,,. Since G satisfies the Haar
condition on T,,, and on T,,, following Theoréem 1.4, there must exist a
unique best approximation 4, € G for approximating fon T,,, and a unique
best approximation g,, € G for approximating f"on T,,. Furthermore #,, is
an AE of fon T, and & is an AE of fon T,,,. Since z,,— z for m - oo it is
easily verified that #,,— 0 and g,, - £, for m - 0.

Now let m, € N be sufficiently large such that h,, # g, for all m > m,. We

distinguish:

@) NS = kmlr,, <7 2allr,, I 7€ {Xgsus X,}, then y;#z and it
follows from the construction of f that | f{y)| < [(f— &)(») = F— &liz-
This implies the existence of an integer m, such that, for ali m>m,,
(F~ ha)(2) <[~ gm)(3). I 3,€ fxonmux,) and  y,#2z, then
1= 20O =1 T = Bllz,,, <1 F = &mllr,, = (F— 8m)(D)l

Furthermore (/' k) (z)l = 17— Rlly,., <17~ & mllrsn = (7~ En)zm)-
Thus we have shown that for all m > m, If— Apllr,, < = &wlz,,- Then A,
is also a best approximation for f on T,,, which contradicts the hypothesis
that G satisfies the Haar condition on T,,,.

@) ||f— bllr,, > | f— &mllr,, Here we can conclude as in case (i).
Therefore we still must show the existence of a function f'€ C(X) and of
an n-dimensional subspace G of C(X) satisfying conditions (i) to (iv). If
conditions (iii) and (iv) already hold for the functions f— 0 and /' — g, then
we set G =G, f:=/, §, =g, and the proof is complete.
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If not, then we define the following subsets of {x,,..., x,}, respectively
{ Vg seves Vbt

E\ = {x;: (f — go)(x;) = =f(x)), X, & { Ygoros Y} 15

Fi={pif(3)=~(f—8)(Y) Yi € {Xgs0ees Xp}}s

Ey = {x;: (f — go)(x:) = = (x), X; € { ¥goees Y} }
Vit (f =8y} =L (Pi)s ¥: € {Xgseer Xt

=
Ey = {x;: (f~ 80)(x) =S (X))s X; € { Ygoues Py} s
Fy={y;: (f—g)») =f(3)s i € {Xgseer Xy}
Ey = {x;: (f — 8o)(x) =S (X)), X, € { Yoseers Vit hs
Eg = {x;: |(f = go)x)l <| S =1}

Fy={y.:|f(y)l <I(f— &)¥ =11/ — &ll}-
Then x€ E, UF, UE, implies that g,(x)=2f(x) and x€E,UF,UE,
implies that g,(x) = 0. Furthermore it follows from z = x; =y, that zE E,.
We may assume that E, =@ and F, =@. Otherwise we define a function
S€ CX) by
flx)=rf(x) for all x,€ E,,
f(y)=0 for all y,€ F,,
Ax) :==f(x) for all x € f\(E, U F)).
We furthermore define a subspace G of C(X) by

G := { g € C(X): There exists a g € C |3 such that
gx)=1g(x) Ifx€E,UF,
= g(x) otherwise}.
Then the following properties are easily verified:

(i) G is an n-dimensional subspace of C(X) and satisfies the Haar
condition on X\{z}.

(i) sgn Dg(tysnt,) =580 Dg(t, s t,) for all points ¢,..,t, € X,
where D, is defined corresponding to a fixed chosen basis g, ,..., g, of G and
D¢ corresponding to the basis g, ..., g, with

gi(x) =1 8(x) if x€EE UF, i= 1o n
= g{x) otherwise | e

(iii) Using the arguments in the proof of Lemma 2.1 it follows that, f
has the two AEs 0, g, € G for approximation in X where by definition of G,

go(x)=%go(x) if x€E,UF,

= g,(x) otherwise.
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Furthermore X...., x, are n+ 1 OE-points of f—0 and y,...,y, are n+ 1
QE-points of f—g,.

If we denote the corresponding subsets of {x,,...,x,} and of {y,,...,y,} to the
functions f— 0 and f— g, by E,, F, instead of E,, F;, then it immediately
follows from the construction of f,g, that E,=F, =@, E,=E, for
i=23,4 F,=F,, E,=E,UE,, F,=F UF,. Therefore we may assume
that E, =@, F, = @.

We may now complete the proof by constructing a function f and a
subspace G having the desired properties. We  first  set
{tysees t,} :=E;\UF,UE, and observe that r + 1 < n, because by definition
of E,, Fy, E, for each i=0,..., r, t; must be a zero of g,, but each non-zero
g € G has at most n distinct zeros. Since z € E, we assume that z =¢,. We
now choose n—r distinct points ¢,,,,...t,€EE,JE;. Then
z=1t,& {t,,.., t,} implies that D(¢,,...,t,) # 0 and, therefore, for each
m € N there is a g,,, € G such that

Gom(t) = 8o(t;) if LEE,VE,VE t;#z2,
_ OV A x) g
m i= X 3
_8(“1)141()’0’---,}’;.) .
= f s == F .
- it {,=y,ck,

Then it is easily verified that g, — g, for m— oo. Therefore there is an

integer m, such that for all x € Es|(f— go,m,)(x)| <[f(x)| and for all

x € Fs| f(x)| <I(f—80)(x)| — (& — &o.m,)(x)|. Furthermore let m, be so

sufficiently large that for all x€ Uy g m(x) <|f(x)] and for all

x € E, sgn go(x) = sgn gO.mo(x) and 1/m, < || f|l. We set g, := 8o,mqy-
Furthermore we define a function f by

Ax):=f(x) forallx€E,UE,UE,UE,, x#z
&(=1)" 4(Yo s V)
mg
Fx) i=1(x) — go(x) + 8o(x)  for all x EF,.

On the set Uy, f will be defined later.

Since for all x,€ E,, sgn g,(x,) =sgn g,(x;), for all x,€ E, there are
positive real numbers c; such that c; §,(x;) = g,(x;). Using these numbers we
define a subspace G of C()?) by

G :={§ € C(X): there is a g € G such that
ix)=glx)  if xeXE,
=c, g(x) if x=x,€E,}

F) =f(r) - for all y, € F,
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Then it is easily verified that G is an n-dimensional space satisfying the Haar
condition on X\{z}. Furthermore it follows from ¢,>0 that
sgn Dy(t, yvees t,) = 580 Dlt,5.nn, £,) for all points ¢,,..., ¢, € X. This implies
that A,(xg,..., X,) = 4,(Xgy-r X,,) fOr i=0,..,n, where A, is defined with
respect to G analogously as 4;.
Now considering the functlons f—0 and f-— g0 On  {Xgyeees X,y
Yores Vo 1\{z}, where &, € G belongs to g, with respect to G, i.e.,

go(x)=go(x) if XEi\Ez
=c¢;£,(x) if x=x,€E,

it is easy to show that

(_—1)1 Zi(x() Ladad/ xn)j'(xi) = “f“’ i= 0’---’ n, l#:_]a
e(=1) A(Yorr Y= E)¥) =S~ &ll,  i=0sm, i#k

Therefore we still have to define fon U, such that z is also an OE-point of
f—0 and of f—g,. Without loss of generality let f(z)=|f]. We
distinguish:

(i) 84(2)20. Since gy(z) =§go(z) =go,m,(2) and m, €N has been
chosen such that |g (%) <[f(x)| for all xe U,, it follows that
0< £(2) <[(2). _ _

We set flz):=f(z) and define f on U, such that, for all x€ U,,
| F(x) <17 ()| and |(f~ go)(X)l <|f(2)l and fE€ CX).

This implies that (—1)" 4,(xsm., X,)f(x) = fllz for i=0..,n Then
following the proof of Lemma 2.1 we can easily show that OEPg(f ).
Furthermore by the preceding arguments we have that §, € Pz(f), too. Then
it follows from Lemma 2.1 that g,(z) = 0 and therefore

e(=1)' AP Y= 2)2) = I = &ollz = Fllg =1 1

(i) go(z) <0. We set Az) :==f(z) + §,(z) and define fon U, such that

for all x€ U, |(J—g))<IF—g)@)I=If@I=If] and |F()<
|(f — £,)(2)| and f€ C(X). Exactly as in case (i) we can show that

e(=1)' 4(Pores YT =2 = 1T~ &olg=1Fllzs  1=0pm.

We have only to consider that because of g,(z)=0sgn(f—g,)(z)=
sgn f(z) = sgn(f— g,)(z). Then we can show again that 0, §, € Pa( /). But
this contradicts the statement of Lemma 2.1 because for all g € Pz(f) the
relation g(z) = g,(z) < 0 must be valid. Therefore g,(z) < 0 is not possible.
Thus we have shown that g,(z)=0 and we have defined an f € C(X)
havmg two AEs 0,8, € G. Furthermore it is readily verified that £, =F =
E,=F, = @, where these subsets of {x,,..., x,} and of {y,,...,y,} are defined
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to f/— 0 and f— g, analogously as the sets E;, F; to the functions f— 0 and
f—g,- But this is equivalent to the following:

If xié {yo,---, yn}! then |(]'— g.'o)(x[)l < lﬂxi)l

and
if y; & {Xgsms Xphs then |f)l <I(f— &)l

As has been shown above the existence of such functions f; 0, g, is
impossible. This completes the proof,

In the particular case X = [a, b], the statement of Theorem 2.2 has been
proved by Niirnberger and Sommer [6] (see also Sommer and Strauss [9]).
If T is any locally compact subset of R and G < C,(T) is weak Chebyshev
(here weak Chebyshev is defined analogously as in the case X = [a, b]) then
the statement of Theorem 2.2 follows directly from a result of Niirnberger
[5]- For proving his result this author has observed that the problem must
only be studied on certain sets of alternating extreme points of error
functions f— g, and f— g,, where g,, §, € G are assumed to be AEs of a
function f€ Cy(T). Therefore for X — R the arguments established in that
paper would apply to our case if we can transform the given subspace G into
a weak Chebyshev subspace on the sets of OE-points of certain error
functions f— g, and f— g, by changing the sign of the basis functions of G
on these sets. Unfortunately this is not true in general as the following
example shows.

ExaMPLE 1. Let X={0,1]U {2, 3] and the two functions g,, g, € C(X)
be defined by g,(x) :=1 and

2,(x)=x if x€][0,1]
=2-x if x€[2,3]

Then the space G :=span{g,, g,} satisfies the Haar condition on X\{0} and
condition (1.2), too. But G is not weak Chebyshev, since the function
g, — 3g, has two sign changes. However, Theorem 2.2 implies that each
f€C(X) has exactly one AE. If we try to prove the statement of this
theorem by following the arguments in [5], we would suppose that there is
an fe€ C(X) having two AEs g,, g,€ G with OE-points x,, x,,x, and
YosV1:Y,, tespectively. For example, the partition x,=0, x, =1, x,=2,
Yo=0,y,=2, y,=13 could be possible. But the arguments in [5] only apply
to our case if G can be transformed into a weak Chebyshev subspace on the
set {xq, Xy, Xy, Vg ¥1» Y2} =10, 1, 2, 3} by changing the sign of g, and g, on
this set. However, it is easily verified that there do not exist any numbers o;,
7€ {—1,1}, i=0, 1,2, such that the space G defined by G := span{g,, £},
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where for j =1, 2, §(x;) :=0,g,(x;), i=0, 1,2, and §,(y,) :=18;(y,) is weak
Chebyshev on {0, I, 2, 3}.

In the case X = [a, b] the results in [6] and |9] show that the converse to
Theorem 2.2 is also true. This is a consequence of the following result
established by Sommer and Strauss [9}:

THEOREM 2.4, The following statements are equivalent:

(i) G is a weak Chebyshev subspace of Cla,b| and each non-zero
g € G has at most n distinct zeros.

(iil) G is weak Chebyshev and there is an X € |a, b| such that G
satisfies the Haar condition on [a, b]\{X}.

If we replace weak Chebyshev by condition (1.2) in our general situation
then a corresponding statement is unfortunately no longer true as the
following example shows.

ExampLE 2. Let X=[0,1]U[2,3]U[4,5] and the two functions
£, 8, € C(X) be defined by

1 it x€[0,1] X it xe|0,1]
g,(x)=1(—-1 if x€[2,3] and g,(x)=(x—-2 if x€][2,3]
' x—5 if x€[4,5] -1 if x€[4,5]

Let G :=span{g,, g,}. Then each g € G has at most two distinct zeros and
at most one zero with a sign change in X. Therefore by Lemma2.2 in (8] G
satisfies conditions (1.1) and (1.2). However, observing that g, has the zeros
x, =0, x,=2 and g, — g, has the zeros x, = 1, x, = 4, we have that there is
no point z € X such that G satisfies the Haar condition on X\{z}. Looking
for a minimal set Z guaranteeing condition (1.1) we can choose Z = {0, 1},
Z=1{0,4}, Z=1{1,2} or Z={2,4}.

Therefore we conjecture that the statement of Theorem 2.2 holds for a
greater class of subspaces.

Conjecture. Let G satisfy conditions (1.1) and (1.2) and let each non-
zero g € G have at most n distinct zeros. Then for each f€ C(X) there exists
a unique AE.

The hypothesis that each non-zero g € G has at most n distinct zeros
cannot be weakened. This is easily verified by using the arguments
established in the proof of Theorem 11 in [6] and we get the following
converse to the preceding conjecture.
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THEOREM 2.5. Let G satisfy conditions (1.1) and (1.2) and let each

fE€ C(X) have a unique AE. Then each non-zero g € G has at most n distinct
zeros.

1.

2.

3.

4.

5.

6.

1.
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