
JOURNAL OF APPROXIMATION THEORY 34, 131-145 (1982)

Finite Dimensional Subspaces and Alternation

MANFRED SOMMER

lnstitut fiir Angewandte Mathematik der Universitiit Er/angen-Niirnberg,
8520 Er/angen, West Germany

Communicated by E. W. Cheney

Received December 18, 1980

It is shown that, for a class of finite dimensional subspaces G of C(X), where X
is a certain compact Hausdorff space, the following holds: For eachfE C(X) there
is a best uniform approximation go E G for approximating f by G such that the
error f - go has at least n + I extremal points (dim G = n) which are oriented in a
certain sense. Furthermore, in the case when X is any compact Hausdorff space, it
is studied under which conditions on G, for eachfE C(X), there exists at most one
such best approximation and a sufficient condition for this is given.

INTRODUCTION

Let X denote a compact Hausdorff space and C(X) the space of all real­
valued continuous functions I on X under the uniform norm
IIIII := sup{l/(x)1 : x E X}. If G is a finite dimensional subspace of C(X),
then, for each IE C(X), the set Pdf) := { go E G: Ilf- go II =
inf{ll/-gll :gE G}} is the set 01 best uniform approximations to/from G.
It is well known that Pd/) is a singleton for each/E C(X) if and only if G
satisfies the Haar condition. It is also well known (see Singer [7, p. 182])
that if G = span{ g"..., gn} satisfies the Haar condition, then, for each
IE C(X), the error 1- gJ' where {gJ} = Pd/), has at least n + I extremal
points Xo,..., x n E X such that e· el(_1)1U - gJ)(x1) = /I1- gJII, i = 0,..., n,
e = ±I, where

el = sgn det(gk(xl»k= 1 7=0'
1*1

In the particular case when X = [a, b I, a real compact interval, and
X o< Xl < ... < xn E [a, b I, these constants assume the same values el = €
with €= ± I and, therefore, the error 1- gJ has at least n + I alternating
extreme points. Considering this special case we call gJ an alternation
element of I also in case X is not an interval.

If G fails to satisfy the Haar condition, then for a given IE C(X), there
mayor may not exist agE PaU) such that g can be interpreted as an alter­
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nation element. This problem has been studied by some authors in the
following sense: How to describe those spaces G for which, for each
jE C(X), X ~ IR, there is agE PG(f) and n + 1 distinct points
XO<x 1 < ... <xnEX such that e(-I)i(j-g)(x;)=llj-gll, i=O,... ,n,
e = ± I?

In the particular case when X = [a, b], Jones and Karlovitz [2] have
completely solved this problem. They have shown that the spaces having this
property are exactly the weak Chebyshev spaces. Later on, Deutsch et al. [1]
have generalized this result to the weak Chebyshev subspaces of Co(T),
where T is any locally compact subset of IR and Co(T) denotes the Banach
space of all real-valued continuous functions on T vanishing at infinity, i.e.,
for each e >° the set {x E T: Ij(x)1 ~ e} is compact. Nurnberger and
Sommer [6] and Nurnberger [5] have characterized those weak Chebyshev
subspaces of qa, b] and of Co(T), respectively, for which even uniqueness of
the alternation elements holds.

In this paper we are concerned with finite dimensional subspaces of C(X)
which fail to satisfy the Haar condition and may not be weak Chebyshev.
We study the problem of existence and uniqueness of alternation elements in
this general case. Following the definition of alternation elements in the Haar
case we analogously define such functions in the case when G belongs to a
class of finite dimensional subspaces of C(X) whose non-zero elements have
at most finitely many zeros. We show (Theorem 1.5) that, under appropriate
hypotheses on X, each jE C(X) has at least one alternation element for
approximatingjby G. We furthermore give a condition (Theorem 2.3) under
which for eachjE C(X) there is at most one alternation element. Then from
both of these results there follows a result of Nurnberger and Sommer [6],
their arguments, however, and also the arguments established by Nurnberger
[5] do not apply to our case as we show in Example 1.

Our results immediately apply to the problem of existence of continuous
selections for the metric projection PG' Such a continuous selection s is a
continuous mapping s: C(X) -+ G such that s(f) E PG(f) for each jE C(X).
We show in [8] that the property that eachjE C(X) has a unique alternation
element gf E PG(f), where X satisfies the same hypotheses as in Theorem 1.5
implies the existence of a continuous selection s defined by s(f) := gf'

Using the arguments established in this paper it is easily verified that all
results given here are also true if C(X) will be replaced by Co(T), where Tis
a corresponding locally compact Hausdorff space.

1. EXISTENCE OF ALTERNATION ELEMENTS

In the following X will be any compact Hausdorff space and X a compact
Hausdorff space satisfying the following property: For each sequence
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{Xk } c X with xk -+ X E X for k -+ 00 and each neighborhood U of x there is
an integer k , such that for all xk ' xf E U, k ~ k" k~ k

"
there is a path P

from xk to xf completely contained in U.
Furthermore G will always denote an n-dimensional subspace of C(X) and

of C(X), respectively, n ~ 2 and X, respectively, X will contain at least one
non-isolated point. For brevity we will give some notations and definitions
only for X but we will always assume that the same has been done for X.

We often will use the following properties.

DEFINITION 1.1. We say that G satisfies the Haar condition on a subset
Y of X if each non-zero g E G has at most n - I zeros on Y. G is said to be
Chebyshev if PGU) is a singleton for each fE C(X).

It is well known that these both conditions are equivalent. In particular the
following statement holds:

THEOREM 1.2. The following statements are equivalent:

(i) G is Chebyshev.

(ii) G satisfies the Haar condition on X.

(iii)

for each basis gl ,..., gn of G and all n distinct points XI ,,,,,xn E X.

A proof of this classical result can be found in Meinardus [4].
Statement (iii) of the preceding theorem will play an important role for the

following arguments. Therefore, for brevity we set

for all points XI'"'' x n E X,

where g1"'" gn is a fixed chosen basis of G.
Henceforth we will suppose that G satisfies the following conditions:

(1.1) There is a minimal finite subset Z = {zl''''' zm} of non-isolated
points of X such that G satisfies the Haar condition on X\Z.

(1.2) For any n distinct points X l" '" x n E X there are pairwise disjoint
neighborhoods U/ of XI' i = 1,..., n, such that BDG(Y"... ,Yn) ~ 0, B = ± 1, for
all Y/ E U/, i = 1,..., n.

Then these both conditions imply that for any n distinct points
x" , xn E X the inequality BDG(YI , , Yn) > 0, B = ± 1, holds for all n-tuples
(Y" ,Yn) E fl?=l U/ for which {Yl, ,Yn} n Z = 0.
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If Xc IR, then the finite dimensional subspaces G of C(X) for which
eDG(x I , ...,xn)~ 0, e = ± 1, for all points x I < x 2 < ... < x nE X play a
fundamental role in the approximation of functions. In particular, the
following statements are equivalent:

(i) mG(Xl'""xn)~O, e= ±1, for all points XI < ... <xnEX.

(ii) Each g E G has at most n - 1 sign changes, i.e., there do not exist
points X o < XI < ... < XnE X such that g(x l ) g(x l +I) <°for i = 0,..., n - 1.

This equivalence has been proved by Jones and Karlovitz [2] if X = [a, b ],
a real compact interval and by Deutsch et al. [1] if X is any compact subset
of IR. By Karlin and Studden [3] a space G satisfying one of the preceding
conditions is said to be a weak Chebyshev subspace of C(X).

We will show that the conditions (1.1) and (1.2) imply that eachlE C(X)
has a particular best approximation. To do this we will need the following
notations:

Let XO,xl',,,,xn be any n + 1 distinct points. If, for some iE 10,..., n},
z n {xo,'''' XI_I' x l +I , ... , xn}= 0, then we set:

If zn {Xo,""XI_l'XI+l''''' x n}*0, then by condition (1.2) there are
neighborhoods Uj of xj for j = 0,..., n, j * i, such that
eDG(YO""'Yi-l'YI+l' ...,Yn) > 0, e = ±1, for all

n

(Yo'·"'YI-l'YI+l' ..·,Yn)E n UI
j=O
j,;,f

Then we define

DEFINITION 1.3. If/E C(X), then go E PG(f) is said to be an alternation
element (AE) off, if there exist n + 1 distinct points xo,'''' x nE X such that

i = 0,..., n, e = ± 1.

The points xo,'''' x n are called oriented extreme points (DE-points) ofI-go·

In the following the variables X o,'''' X n of AI will sometimes be omitted.

Remark. If X = [a, bland G is an n-dimensional subspace of C[a, bI
satisfying the conditions (1.1) and (1.2), then it is easily verified that
eDdxl"'" x n)~ 0, e = ± 1, for all points a ~ XI < ... < xn~ b. Then
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following the above given equivalence it turns out that G must be a weak
Chebyshev subspace for which each nonzero g E G has at most finitely
many zeros. Therefore we have that for all points a::;;; X o <XI < ... <x n ::;;; b
and i = 0,..., n the relation Ai(xo"'" x n ) = g holds and in this case
Definition 1.3 simplifies to the following: A function go E Pdf) is an
AE of f, if there exist n + 1 points a::;;; X o < ... <X n ::;;; b such that
e(-I)i(f - go)(xi) = Ilf- goll, i = 0,... , n, e = ± 1.

In this case the points xo,... , xn are alternating extreme points and
therefore the notation AE seems to be justified also in our general situation.
Jones and Karlovitz [2] have shown that the subspaces G of qa, b] for
which for each f E q a, b] there exists at least one AE go E PG(f) are
exactly the weak Chebyshev subspaces of qa, b]. Later on, Deutsch et al.
[1] have generalized this result to the weak Chebyshev subspaces of Co(T),
where T is any locally compact subset of the real line and a weak Chebyshev
subspace G of Co(T) is defined analogously as in the case Xc IR, X
compact.

If G is a Chebyshev subspace of qX), then the existence of an AE for
each fE qX) is well known. This can be found in Singer [7, p. 182]. In
particular, the following characterization of existence and uniqueness of best
approximations is given:

THEOREM 1.4. The following statements are equivalent:

(i) G is a Chebyshev space.

(ii) For every fE C(X) there exists a unique best approximation
gfEG.

(iii) For every fE C(X) there exists a unique best approximation
gf E G and gf is an AE off

We are now able to prove our first result.

THEOREM 1.5. Let G be an n-dimensional subspace of qX) satisfying
the conditions (1.1) and (1.2). Then for each fE qX) there exists at least
one AE go E PG(f).

Proof Since each Zi E Z is non-isolated, for each i = 1,..., m there is a
sequence {zidcX with Zik-+Zi for k-+oo and Zik*Zi' This implies the
existence of open neighborhoods Uik of Z i' i = 1,..., m, such that for each k
Uik c Ui,k-I and Zik E Ui,k-I\Uik , For each k we set X k := X\U;: I Uik ,

Then by condition (1.1), G satisfies the Haar condition on X k and
therefore Theorem 1.4 implies, for each fE qX), the existence of a gk E G
such that gk IXk is an AE off IXk with respect to G IXk' Then it follows from
II gkllxk::;;; 211fll that there is a subsequence of {gk} which we again denote by
{gk} such that gk -+ go for k -+ 00, go E G. This function go satisfies the
following:
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(i) go E PG(f), since otherwise there is agE G with
Ilf-gil < Ilf-goll· But this is not possible, because Zik-+Zi and zikEXk
implies the existence of an integer ko such that for all k > ko the inequality

Ilf-gllx
k
< Ilf-gkllx

k
holds.

(ii) go is an AE of f To show this, for each k we denote n + 1 OE­
points of f - gk by XOk ' x\k"'" X"k' Then for each k the relation
ek(-I)iLfik(f-gk)(Xik) = Ilf-gkllx

k
, i=D,...,n, ek=±I, holds where

Lf ik := sgn DG(xOk "'" Xi - 1,k' Xi+ l •k'"'' X"k)'

Without loss of generality we may assume that ek = e and x/k -+ x/ E X for
k -+ 00. If all points X o,..., x" are distinct, then it follows from condition (1.2)
that Lf/k-+Lf/(xo,""x,,) for k-+ 00 and we are ready.

Therefore suppose that, for some j E {D, , n} and some I E {I ,...,j}, xj _I =
Xj_i+1=,,,=xj and x/=I=Xj for i=D, ,j-l-l,j+l,... ,n. We may
assume that I is an odd number. Then it follows from e(-I)1-/

Lfj-i,k(f-gk)(Xj-i,k) = Ilf-gkllx
k
= e(-I)j-i+' Lfj-i+I,k(f-gk) (Xj-i+1,k)

for i = 1,... , I and Xj-i,k -+ xj _1 = xj for k -+ 00, i = D,... , I that Lfj-i,k =
Lfj - i +2 ,k =' .. =Lfj_I,k = -Lfjk = -Lfj - 2,k = ... =-LfJ-i+I,k for k sufficiently
large. Since Xi =1= xj for i = D,...,j -1- l,j + 1,... , n there must be an integer
ko and a neighborhood U of x j such that Xj-i,k' xJ- i + I,k'"'' xjk E U for all
k ~ ko and X ik E U for i = D,...,j -1- I,j + I,... , n. Then by definition of X
there is an integer k l ~ ko such that for any two points Xjjk' Xijk'P,
qE {j - 1,...,j}, k ~ k 1, there is a path P from Xjjk to Xijk completely
contained in U. Then it is easily verified that, for some k ~ k I' there are two
points xpk ' x qk and a path Pc U from xpk to x qk such that p, q E {j -I,...,j},
p <q, p + q an odd number and X ik E P for i = D,... , n, i =1= p, q. Since
Lfpk=-Lfqk and G satisfies the Haar condition on {xOk,...,Xp-I,k'
xp+I,k,...,x"d and on {XOk, ...,Xq_l,k,Xq+l,k,...,x"d it follows that for the
function Ik defined by

the inequality

sgn Ik(xpk ) . sgn Ik(xqk) = (-1)" -p-I Lfqk(-1),,-q Lfpk

=Lfqk ·Lfpk =-1 <D

must hold. This implies the existence of a point xE P such that Ik (£) = Dand
x must be a zero with a sign change of Ik in X. This means that for each
neighborhood V of x there are points X, xE V such that

DG(xOk "'" Xp_I,k' XP + I,k"'" xq_ l •k, xq+ I,k"'" X"k' x)

X DG(xOk "'" Xp_ l •k' XP + I,k:'''' Xq_I,k' xq+ I,k"'" X"k' x) < D.
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Since by the preceding arguments all points XOk"'" Xp_I,k' XP+ I,k"'"

Xq_l,k' xq+ I,k"'" xnk ' X are distinct, we have got a contradiction to condition
(1.2).

2. UNIQUENESS OF ALTERNATION ELEMENTS

We will show in [8] that the existence and the uniqueness of AEs
guarantee the existence of continuous selections, Therefore in this section we
study under which conditions on G for each fE C(X) there is a unique AE.
In Theorem 2.2 we show that uniqueness holds if Z is a singleton. To prove
this we need the following lemma which even holds for any compact
Hausdorff space.

LEMMA 2.1. Let Z = {z} and go E PG(f) be an AE of f If
{z} n {xo"'" xn } '* 0, where xo,· .. , x n are n + 1 OE-points of f - go' then
g(z) = go(z) for all g E PG(I).

Proof Let X o,..., x n be n + I OE-points of f - go' Then
e(-I)/ Alf- go)(xJ =Ilf- goll, i =0,..., n, e =± l.

Let g E PG(I) arbitrary. Then it follows from Ilf- gil = Ilf- goll that
e(-I)/ A/(f- g)(x/) ~ e(-l)/A/(f- go)(xJ and, therefore, e(-I)/ A/(go - g)
(xJ ~ 0, i = 0,..., n.

We now assume that there is a j E {O,..., n} with z = Xj' Then, since
G Ix\Z = G Ix\(z) satisfies the Haar condition, it follows that
DG(xo'"'' Xj_I' Xj +1 , ... , X n) 1= 0.

Since dim G = n, we have the following equality:

0=

(go - g)(xo)

gl(XO)

(go - g)(xn )

gl(Xn )

n

=.2.: (_1)/ DG(xo,,,,,x/_l'x/+I'...,xn )(go-g)(x/),
/=0

where {gl''''' gn} is a fixed chosen basis of G and D G is defined
corresponding to this basis. Since for DG(xo'oo., X/_I' x/+ 1''''' x n ) 1=° the
relation A/ = sgn DG(xo"'" X/_I' x/+ I ,,,., x n ) holds, it follows from
e(-l)/ A/(go - g)(x/) ~ 0, i = 0,.", n, that for i = 0,..., n, (-1)/ DG(xo"'" x/_1'
x/ + I , ... , x n )( go - g)(x/) = 0. Then DG(xo,,,., xj -I' xj+ 1 , ... , X n) 1=°implies that
g(z) = go(z).

We are now in a position to give a sufficient condition for uniqueness of
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AEs which shows that uniqueness of such particular best approximations is
not restricted to the case when G is a Haar space.

THEOREM 2.2. Let G be an n-dimensional subspace of C(X) satisfying
the conditions (1.1) and (1.2) with Z = {z f. Then each fE C(X) has a unique
AE.

The proof of this statement follows directly from Theorem 1.5 and the
fOllowing theorem.

THEOREM 2.3. Let G be an n-dimensional subspace of C(X) satisfying
the conditions (1.1) and (1.2). Then each fE C(X) has at most one AE.

Proof Suppose there is anfE C(X) having two AEs go,g\ E PG(f). Let
XO"",xn andYo,... ,Yn be DE-points off-g\ andf-go' respectively. Then

i = 0,..., n, e= ± 1,

and

i = 0,... , n, e = ± 1.

Without loss of generality we may assume that g \ == ° and e= I. We
distinguish two cases.

First case. zE {xo, ...,xn} or zE {Yo, ... ,Yn}' Without loss of generality
let z E {xo,... , xn f. Then condition (1.1) implies that G satisfies the Haar
condition on {xo,..., X n }. Furthermore by the arguments of Lemma 2.1 we
have that ° is an AE of f for approximation by G on {xo,..., x n } and
l(f- go)(x;)I";;; If(xi)1 for i = 0,... , n. But this contradicts the statements of
Theorem 1.4.

Therefore we have only to consider the second case.

Second case. zE {xO,... ,xnf and zE {Yo,... ,Ynf. Let Z=Xj=Yk' Then
Lemma 2.1 implies that g(xj) = ° for all g E PG(f) and, in particular,
f(x) = (f- gO)(Yk)'

In the following we will only need a special subset X of X. We set

where Do is a closed neighborhood of z in X such that

and Igo(x)1 <4If(x)1 for all x E Do (remember that go(z) = 0). We will now
construct a function JE C(X) and an n-dimensional subspace G of C(X)
such that the following conditions hold:
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(i) Gsatisfies the Haar condition on X\{z}.

(ii) sgn Da(tl ,..., t n) = sgn DG(tl"'" t n) for all points tl"'" t n E X and
certain bases gl •...• gn of G and il ...·, in of G.

(iii) 1 has two AEs 0, io E G. Furthermore xo,"" xn are n + I OE­
points of1- 0 and YO'''''Yn are n + 1 OE-points of1- io.

(iv) If Yi IE {xo,... , x n}, then 11(YJI < 11111x and if x, IE {Yo"'" Yn}' then
1(1- io)(xi)1 <111- iollx·
Before constructing such a function land a subspace Ghaving the preceding
properties we show that the existence ofland Gyields a contradiction of the
hypothesis that f has two AEs 0, go E Pdf). Since by condition (1.1) the
point z is non-isolated, there is a sequence {zm} c Do such that Zm-+Z for
m-+oo, Zm=F-z. This implies that {zm}n{xo,... ,xn,Yo,...,Yn}=0. For each
mE IN we set:

and

We now approximate 1 by Gon T1m and TZm ' Since G satisfies the Haar
condition on Tim and on T Zm ' following Theorem 1.4, there must exist a
unique best approximation hm E Gfor approximating Ion T 1m and a unique
best approximation gm E Gfor approximating Ion Tzm . Furthermore hm is
an AE of1on Tim and gm is an AE of1on T zm . Since zm -+ Z for m -+ 00 it is
easily verified that hm-+ 0 and gm -+ io for m -+ 00.

Now let moE IN be sufficiently large such that hm=F- gm for all m :> mo' We
distinguish:

(i) 111- hmll T,m ~ 111- gm II T2m' If Yi E {xo,.. ·• xn}, then Yi *' Z and it

follows from the construction of 1 that IflYJI <1<1- io)(yJ = 111- iollx·
This implies the existence of an integer m I such that, for all m:> m I ,

1(1- hm)(y/)I <1(1- gm)(Yi)l· If Y/ E {xo,"" x n} and Yi =F- z, then
1<1- hm)(y/)I =111- hmll T,m ~ 111- gmllT2m = 1(1- gm)(Y&

Furthermore 1<1- hm)(zm)1 = IIJ- hmll T,m ~ IIJ- gmIIT2m = 1(1- gm)(zm)l·
Thus we have shown that for all m_:> ml 111- hmll T2M ~ 111- gmllT2m' Then hm
is also a best approximation for f on TIm which contradicts the hypothesis
that Gsatisfies the Haar condition on TZm '

(ii) 111- hmll Tlm > 111- gmllT2m ' Here we can conclude as in case (i).

Therefore we still must show the existence of a function IE qX) and of
an n-dimensional subspace G of qX) satisfying conditions (i) to (iv). If
conditions (iii) and (iv) already hold for the functionsf - 0 andf - go' then
we set G:= G,l:=f, go :=go and the proof is complete.
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If not, then we define the following subsets of {xo,..., x n }, respectively

{Yo,···,Yn}:

E\:= {Xi: (J-go)(Xj)=-f(Xj),Xj~ {Yo, ... ,Yn}f,
F\ := {Yj :f(Yi) = -(J- go)(Yj)' Yj ~ {xo'···' xn}f,
Ez := {Xj: (J-go)(xj)=-f(xJ,xjE {Yo, ... ,Yn}}

= {Yj: (J- go)(yJ = -f(Yj),Yj E {Xo,..·, x n}},
E3 := {Xj: (J-go)(xJ=f(Xj),Xj~ {Yo, ...,Yn}},
F3 := {Yj: (J-go)(Yj)=f(Yj),yjE jxo'oo.,Xn}},
E4 := {Xj: (J- go)(X j) =f(xi), XjE {Yo, ...,Yn}},
Es := jx j: I(J- go)(xi)1 < If(xJI = Ilfll},
Fs := lY,: If(Yj)1 < I(J- go)(yJI = Ilf- goll}·

Then xEE\UF\UEZ implies that go(x)=2f(x) and xEE3 UF3 UE4

implies that go(x) = O. Furthermore it follows from z = xj = Yk that z E E4 •

We may assume that E 1 = 0 and F\ = 0. Otherwise we define a function
IE qi) by

I(x j) :=f(xi)

l(yJ :=0

Ax) :=f(x)

for all Xi EEl'

for all Yj E FI'

for all X E%\(E 1 UF1).

We furthermore define a subspace Gof qi) by

G:= {g E qi): There exists agE C Ix such that

g(x)=!g(x) if xEE\UF l

= g(x) otherwise}.

Then the following properties are easily verified:

(i) G is an n-dimensional subspace of qi) and satisfies the Haar
condition on %\{z}.

(ii) sgn Dc;(tl' ...,tn) = sgn DG(t1""" tn) for all points tl"'" tnE X,
where D G is defined corresponding to a fixed chosen basis g\ '00" gn of G and
DG corresponding to the basis g\ ,..., gn with

gj(X) = ! gj(x)

= gj(x)

if xEE I UF1

otherwise
i = 1,..., n.

(iii) Using the arguments in the proof of Lemma 2.1 it follows that I
has the two AEs 0, go E Gfor approximation in X where by definition of G,

go(X) = ! go(x)

= go(x)

if xEE\ UF1

otherwise.
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Furthermore Xo,..., x n are n + I OE-points ofJ- 0 and Yo ,...,Yn are n + I
OE-points of1- go-

If we denote the corresponding subsets of {xo,...,xnl and of {Yo,...,Ynl to the
functions J- 0 and J- go by E/, F/ instead of E/, Fp then it immediately
follows from the construction of J, go that E) = F) = 0, E; = E; for
i = 2, 3,4, F3 = F3 , Es = EsU E), Fs = FsU F). Therefore we may assume
that E) = 0, F) = 0.

We may now complete the proof by constructing a function I and a
subspace G having the desired properties. We first set
{to,"" trf := E 3 U F 3 U E 4 and observe that r + I ~ n, because by definition
of E3 , F3 , E4 for each i= 0,..., r, t l must be a zero of go' but each non-zero
g E G has at most n distinct zeros. Since z E E4 we assume that z = to' We
now choose n - r distinct points t r + )l'''' tn E E 2 U Es. Then
z = to E {tl''''' tnl implies that DG(t)l'''' tn) *' 0 and, therefore, for each
mE IN there is a gOm E G such that

gom(tl) := go(tl)

(-1/ L1/(xo,...,xn )

m

- e(-1)/ L1/(Yo,..·,Yn)
m

Then it is easily verified that gOm -+ go for m -+ 00. Therefore there is an
integer mo such that for all x E E s1([- go,mo)(x)1 < [[(x)1 and for all
x E Fs I/(x)1 <ICf- go)(x)I-I(go - go,mo)(x)l. Furthermore let mo be so
sufficiently large that for all x E VoIgo,mo(x)1 < I/(x)1 and for all
x E E 2 sgn go(x) = sgn go.mo(x) and limo < 11/11. We set go := go,mo'

Furthermore we define a function I by

Ax) :=/(x) for all xEE2 UE3 UE4 UEs, x*,z

l(y/) :=/(Y/) - e(-l)1 L1/(yo,""Yn) for all YI E F
3mo

Ax) :=[(x)-go(x)+go(x) for all xEFs'

On the set 00 , I will be defined later.
Since for all x/ E E 2 , sgn go(x/) = sgn go(x/), for all XI E E 2 there are

positive real numbers c, such that c, go(x,) = go(x/). Using these numbers we
define a subspace Gof ceX) by

G:= { gE ceX): there is agE G such that

g(x) = g(x) ~f x E X\E2
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Then it is easily verified that Gis an n-dimensional space satisfying the Haar
condition on X\ {z f. Furthermore it follows from ci >0 that
sgn Dij(t"..., tn) = sgn Ddt!'""., tn) for all points t"..., tn E X. This implies
that Ji(XO"'" x n) = Lflxo,"" x n) for i = 0,... , n, where J i is defined with
respect to Ganalogously as Lf i'

Now considering the functions 1- 0 and 1- go on {xo ,... , x n '

Yo ,..., Yn} \ {z}, where go E Gbelongs to go with respect to G, i.e.,

io(x) = go(x)

= cdo(x)

it is easy to show that

if xE X\E2

if X= Xi E E 2

(_l)i Ji(Xo,"" Xn)J(Xi) = II fII,

e(_l)i Ji(yo,"" Yn)(l- gO)(Yi) = III- go II,

i = 0,..., n, i *" j,

i = 0,..., n, i *" k.

Therefore we still have to define Ion Uo such that z is also an OE-point of
1-0 and of l-io' Without loss of generality let I(z) = 11/11· We
distinguish:

(i) go(z)~O. Since go(z)=go(z)=go,miz) an~ moEIN has been
chosen such that Igo m (x)1 < I/(x)1 for all X E Uo, it follows that_ ' 0

o~ go(z) </(z).
We set Jtz) :=/(z) and define 1 on Uo such that, for all x E Uo,

Il(x)I~ll(z)1 and IU-io)(x)I~ll(z)1 andlEC(X).
This implies that (_l)i Ji(XO"'" xn)l(xi) = Illlli for i = 0..., n. Then

following the proof of Lemma 2.1 we can easily show that 0 E PijU).
Furthermore by the preceding arguments we have that go E PijU), too. Then
it follows from Lemma 2.1 that io(z) = 0 and therefore

e(-l)i Ji(yo,'''' Yn)(l- io)(yJ = 111- go Iii = Illlli = 11/11·

(ii) go(z) < O. We setj'tz) :=/(z) +go(z) and define Ion Uo such that
for all x E UO, IU- io)(x)1 ~ IU- io)(z)1 = I/(z)1 = IIIII and Il(x)1 ~
IU- go)(z)1 and IE C(X). Exactly as in case (i) we can show that

e(-l)i Ji(Yo, ...,Yn)(l- iO)(Yi) = 111- go Iii = Illlli, i = 0,..., n.

We have only to consider that because of go(z) = 0 sgn(l- io)(z) =
sgn/(z) = sgn(f- go)(z). Then we can show again that 0, go E Pij(l). But
this contradicts the statement of Lemma 2.1 because for all g E PijU) the
relation g(z) = io(z) < 0 must be valid. Therefore io(z) < 0 is not possible.

Thus we have shown that go(z) = 0 and we have defined an IE C(X)
having two AEs 0, go E G. Furthermore it is readily verified that £, = F, =
E 3 = F3 = 0, where these subsets of {xo,..., Xn} and of {Yo ,. .., Yn} are defined
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to/-o and/-go analogously as the sets E/,F/ to the functionsf-O and
f - go' But this is equivalent to the following:

and

As has been shown above the existence of such functions J, 0, go is
impossible. This completes the proof.

In the particular case X = [a, b], the statement of Theorem 2.2 has been
proved by Niirnberger and Sommer [6] (see also Sommer and Strauss [9]).
If T is any locally compact subset of IR and G c Co(T) is weak Chebyshev
(here weak Chebyshev is defined analogously as in the case X = [a, b]) then
the statement of Theorem 2.2 follows directly from a result of Niirnberger
[5]. For proving his result this author has observed that the problem must
only be studied on certain sets of alternating extreme points of error
functions f - go and f - go' where go' go E G are assumed to be AEs of a
function fE Co(T). Therefore for Xc IR the arguments established in that
paper would apply to our case if we can transform the given subspace G into
a weak Chebyshev subspace on the sets of DE-points of certain error
functions f - go and f - go by changing the sign of the basis functions of G
on these sets. Unfortunately this is not true in general as the following
example shows.

EXAMPLE 1. Let X = [0, I] U [2,3] and the two functions gl' g2 E C(X)
be defined by gl(X) := 1 and

if x E [0,1]

if x E [2,31.

Then the space G := span{gl' g2} satisfies the Haar condition on X\ {O} and
condition (1.2), too. But G is not weak Chebyshev, since the function
g2 -! gl has two sign changes. However, Theorem 2.2 implies that each
fE C(X) has exactly one AE. If we try to prove the statement of this
theorem by following the arguments in [5], we would suppose that there is
an fE C(X) having two AEs go' go E G with DE-points xo' xl' x 2 and
YO'YI'Y2' respectively. For example, the partition Xo= 0, Xl = 1, x 2= 2,
Yo = 0, Yl = 2, Y2 = 3 could be possible. But the arguments in [5] only apply
to our case if G can be transformed into a weak Chebyshev subspace on the
set {xo' Xl' x2'YO'YI'Y2} = {O, 1,2,3} by changing the sign of gl and g2 on
this set. However, it is easily verified that there do not exist any numbers ai'
r E {-I, II, i = 0, 1, 2, such that the space G defined by G:= span {gi' g2}'
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where for j = 1,2, iixi) := Gigixi), i = 0, 1,2, and iiY2) := rgj (Y2) is weak
Chebyshev on {O, 1,2,3 f.

In the case X = [a, b] the results in [6] and [9] show that the converse to
Theorem 2.2 is also true. This is a consequence of the following result
established by Sommer and Strauss [9]:

THEOREM 2.4. The following statements are equivalent:

(i) G is a weak Chebyshev subspace of CIa, b] and each non-zero
g E G has at most n distinct zeros.

(ii) G is weak Chebyshev and there is an i E [a, b] such that G
satisfies the Haar condition on [a, b]\{i}.

If we replace weak Chebyshev by condition (1.2) in our general situation
then a corresponding statement is unfortunately no longer true as the
following example shows.

EXAMPLE 2. Let X = [0, 1] U [2, 3] U [4, 5] and the two functions
g" g2 E C(X) be defined by

\

I if x E [0, 1]
gl(x):= -1 if xE[2,3]

,x-5 if xE[4,5] !
x if x E [0, I]

and g2(X):= x - 2 if x E [2,3]
-I if x E [4,5].

Let G := span{gl' g2}' Then each g E G has at most two distinct zeros and
at most one zero with a sign change in X. Therefore by Lemma 2.2 in [8] G
satisfies conditions (Ll) and (l.2). However, observing that g2 has the zeros
XI = 0, x2= 2 and gl - g2 has the zeros XI = 1, x 2= 4, we have that there is
no point z E X such that G satisfies the Haar condition on X\ {z }. Looking
for a minimal set Z guaranteeing condition (Ll) we can choose Z = {O, 1 f,
Z= {0,4}, Z= {I,2} or Z= {2,4}.

Therefore we conjecture that the statement of Theorem 2.2 holds for a
greater class of subspaces.

Conjecture. Let G satisfy conditions (Ll) and (l.2) and let each non­
zero g E G have at most n distinct zeros. Then for eachfE C(X) there exists
a unique AE.

The hypothesis that each non-zero g E G has at most n distinct zeros
cannot be weakened. This is easily verified by using the arguments
established in the proof of Theorem 11 in [6 J and we get the following
converse to the preceding conjecture.
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THEOREM 2.5. Let G satisfy conditions (1.1) and (1.2) and let each
fE C(X) have a unique AE. Then each non-zero g E G has at most n distinct
zeros.
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